Maths

Our curriculum is designed and built upon children's prior knowledge, and we use quality first-hand experiences to help unlock children's curiosity and invest in their cultural understanding and capital. The curriculum makes links and connections to establish purposeful learning which is relevant now and for life in the future.

Mathematics is an integral part of every school curriculum. It teaches children how to make sense of the world around them through developing their ability to calculate, reason and solve problems. At Oakhill Church School, we work to ensure that all children have access to a Maths curriculum which prepares them for life-long learning, acquiring knowledge and skills to take with them. We believe that all children can achieve in Maths through determination and self-belief and we encourage a can-do attitude when attempting new challenges.

Teaching and Learning at Oakhill... 2

EYFS Granular Steps .8

Calculation Policy - Progression of Calculation 18

White Rose Overviews 52

White Rose/National Curriculum - Progression of Skills .46

Teaching and Learning at Oakhill

Teacher Planning:

- Our aim is to promote confidence and competence in maths by creating a positive learning environment where the children are not afraid to make mistakes. We want our children to become fluent in solving calculations with the four rules of number and seek to provide them with a variety of strategies to enable them solve a range of problems. Children work to apply their learnt skills and knowledge to reason mathematically, looking for relationships and generalisations to follow a line of enquiry.
- Teachers plan progressive sequences of lessons following the White Rose Mathematics Curriculum Blocks. Teachers use the White Rose Maths Curriculum to plan lessons - this is a research-based scheme which incorporates the National Curriculum requirements for each year group. The Maths curriculum is taught in blocks throughout the year, allowing time to embed and broaden children's understanding of each area of Maths including number, calculation, fractions, geometry, measure and statistics. Children have regular opportunities to review their prior learning to commit the schemas to their long-term memory.
- All children access a daily maths lesson of 60 minutes.
- We actively plan for children to make connections in their learning, providing choice and challenge in enjoyable lessons to engage children to aspire and flourish in the learning process.
- Teachers follow our "Progression in Calculation" policy to develop our pupil's number fluency in a structured way across the Key Stages.

Lesson Design:

Small steps, and a style of teaching, whereby we adopt an 'I do/we do/you do' approach, are encouraged and supported and we ensure there is challenge for all children through our Try it, Use it, Apply it teaching sequence.

- Try it tasks aim to improve the children's fluency of the skill.
- Use it tasks challenge the children to draw on and apply the skills they have achieved in the 'Try it' tasks.
- Apply it tasks require the children to explain their understanding.

Teaching and Learning at Oakhill

Teaching and Learning at Oakhill

Concrete, Pictorial, Abstract Approach:

Concrete	Pictorial	Abstract
	$\underbrace{\text { KS1: Progressive Concrete, Pictorial, Abstract for Adding 2, 1-digit numbers }}_{3}$	

- Children acquire a solid mathematical understanding through the use of concrete apparatus, pictorial representations and abstract or formal written methods to give them the best chances of mastering maths problems and use in real-life situations.

Developing Recall:

- In addition to planning derived from White Rose Maths, teachers develop number fluency by regularly recalling number bonds and times tables and giving opportunity to practice the skills of arithmetic.
- In KS1 number sense is used to develop recall, and it is continued to be used as an intervention strategy in KS2 where needed
- In KS2, children will have daily arithmetic or multiplication number talk activities. Children are also encouraged to practise their times tables as part of their home learning.
- KS2 Number Talk sessions may involve Fluent in Five arithmetic questions (Third Space Learning) or questions from My Mini Maths (myminimaths.co.uk). Children also have include regular talk sessions for multiplication practice where they are able to discuss strategies for solving problems (including division facts).

Number Sense:

- Daily Number Talk sessions provide children with opportunities to improve oracy skills, as well as develop the ability to articulate, discuss and reason their mathematical thinking.
- We currently use Number Sense to help promote children's oracy skills and number fluency, particularly in EYFS and KS1.

Teaching and Learning at Oakhill

7 key principles of the programme:

Children benefit from moving beyond counting in ones to solve addition and subtraction facts. Not doing so is associated with low attainment.

Systematic teaching of derived fact strategies is effective for all, including children identified as low attainers.

Using a derived fact strategy approach is the best way to commit addition and subtraction facts to memory.

We have an innate ability to process quantities visually. We can use this to support our learning of addition and subtraction facts.

Developing an understanding of part whole relationships supports fluency in number facts.

Teaching derived fact strategies leads not only to fluency in number facts, but also to an understanding of number relationships.

The automatic retrieval of basic maths facts is critical to solving complex maths problems.
-The Number Sense Maths programmes are informed by research into how high and low attaining children develop number sense, and how they solve and learn addition and subtraction facts.

- In Key Stage 1, Number Sense is used alongside other approaches, such as:
counting, times tables, arithmetic and reasoning questions.
- Some children in KS2 may also use Number Sense as an intervention to help improve their fluency and recall of number facts.
- Number Sense is designed to help develop children's confidence and flexibility with number and fluency in addition and subtraction.

Number Sense Progression of Skills:

Teaching and Learning at Oakhill

Number Sense - EYFS:

- How number sense children's mathematical learning in EYFS:

Mathematics

Developing a strong grounding in number is essential so that all children develop the necessary building blocks to excel mathematically. Children should be able to count confidently, develop a deep understanding of the numbers to 10 , the relationships between them and the patterns within those numbers. By providing frequent and varied opportunities to build and apply this understanding - such as using manipulatives, including small pebbles and tens frames for organising counting - children will develop a secure base of knowledge and vocabulary from which mastery of mathematics is built. In addition, it is important that the curriculum includes rich opportunities for children to develop their spatial reasoning skills across all areas of mathematics including shape, space and measures. It is important that children develop positive attitudes and interests in mathematics, look for patterns and relationships, spot connections, 'have a go',

Early Learning Goals

Number

Children at the expected level of development will:
Have a deep understanding of number to 10 , including the composition of each number;
Subitise (recognise quantities without counting) up to 5
Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts.

Numerical Patterns

Children at the expected level of development will:
Verbally count beyond 20, recognising the pattern of the counting system;
Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity; Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed equally

Teaching and Learning at Oakhill

KS2: Progressive Times Table Scheme (Ashley Down Schools Federation)

- In year 3-4, pupils rehearse their times tables daily using a systematic, whole school approach.
- This scheme is designed to break down the learning of times tables into systematic, manageable chunks. It recognises the importance of the commutative law, and the relationship with division facts.

Year 3			Year 4				
2 x	5 x	3 x	4 x	$6 x$	7 x	8 x	9 x
2×2							
3×2	3×5	3×3					
4×2	4×5	4×3	4×4				
5×2	5×5						
6×2	6×5	6×3	6×4	6×6			
7×2	7×5	7×3	7×4	7×6	7×7		
8×2	8×5	8×3	8×4	8×6	8×7	8×8	
9×2	9×5	9×3	9×4	9×6	9×7	9×8	9×9
8 facts	7 facts	6 facts	5 facts	4 facts	3 facts	2 facts	1 fact
By end of $Y 3$: 21 facts learnt 15 facts still to learn			By end of Y 4 : 15 facts learnt to complete building blocks 21 more facts for times table check (see below)				

EYFS Granular Steps

Counting and Cardinality

The knowledge I am learning is:

- To understand that a cardinal value of a number refers to a quantity
- To be able to understand and talk about numerals and their meaning
- To understand and demonstrate the sequence of counting, tagging and knowing the last number represents the total quantity
- To understand and demonstrate conservation of number - things do not change when rearranged

	Step 1	Milestone (CP2)	Step 2	Step 3	Check Point (CP6)
Stage 2 $(2-3)$	- I am learning to count in sequence to three (ordinality)	I can two specific numbers in sequence	- I am learning to recognise numeral one and say the number name - I am learning to count in sequence from 0 to 5 (ordinality) - I am learning to assign a number name to each object of up to two items in a set	- I am learning to assign a number name to each object of up to three items in a set (stable order principle) - I am learning to recognise the numeral two and say the number name - I am learning to count in sequence backwards from 3 to 0	- I can understand the cardinal value of up to three regular objects in a set and understand the last number represents the quantity - I can demonstrate my understanding of numerals one and two - I can count in sequence from 0-5
Stage 3 $(3-4)$	- I am learning to recognise the numeral 3 - I am learning to count backwards from 5 to 0	- I can recognise numerals that are special to me - I can count backwards from 5 to 0	- I am learning to assign a number name to each object of up to four items in a set regular or irregular	- I am learning to assign a number name to each object of up to five items in a set regular or irregular - I am learning to count backwards from 10 to 0	- I can count in sequence from 010 - I can demonstrate my understanding of numerals 1-5

EYFS Granular Steps

- I can tell you zero means nothing
- I can count up to three actions and sounds some of the time
- I can verbally count from 0-20
- I understand the cardinal value of up to 6 items in a set
- I can correctly form a number that is special to me
- I am learning to count in sequence from 0 to 10
- I am learning to recognise the numeral 4 and its number name
- I am learning to make mathematical marks to represent counting
- I am learning to recognise and match numerals and quantity up to 10
- I am learning to correctly form numerals 0-6
- I am learning to count ten objects from a larger group
- I am learning to form recognisable numerals
- I am learning to count up to 5 sounds and actions
- I am learning to match numerals and quantity beyond 10
- I am learning to correctly form numerals 0-10
- I am learning to count ten objects and beyond from a larger group
- I understand the cardinal value of up to 5 items in a set
- I can tag and assign a number in sequence of up to five items in a regular and irregular set
- I can verbally count beyond 20, recognising the pattern of the counting system
- I can put numerals in order 1-10

Comparison
The knowledge that I am learning is:

- To demonstrate and be able to explain my understanding of more, few and the same number (equal number of things in groups)
- To demonstrate my understanding of quantities by being able to explain and reason the relationship between counting numbers 0-10
- To demonstrate why a number is more or less than another number
- To explain how I know what 1 more or 1 less than a number is

EYFS Granular Steps

Stage 2 (2-3)	I am learning to understand the word more by adding objects or taking more turns in my play	I can demonstrate my understanding of more when offered food	I am learning to understand the word less by taking objects away in my play	- I am learning to compare significant differences in quantities in my play - I can compare amounts saying lots more, same	- I can demonstrate my understanding of more when there is a significant differences in quantity in a variety of situations - I can demonstrate my understanding of the vocabulary more, less and fewer in my play
Stage 3 (3-4	I am learning to be able to explain and reason why there is more and fewer (significant difference 30 trains compare to 5 trains)	I can demonstrate and explain my understanding of more and fewer	- I am learning to explain and reason why there is more and fewer (small difference 5 and 10 trains) - I am learning to notice when there is the same amount in a regular set	- I am learning to explain and reason when there is the same amount in an irregular set - I am learning compare quantities in my play independently - I can match objects in 2 groups to find out that they have an equal number of things	- I can explain and reason why there is more or fewer when comparing two groups of objects - I can explain and reason why two groups of objects are the same
Stage 4 (4-5)	- I am learning to use my knowledge of more and fewer to solve every day problems - I am learning to make predictions	- I can predict in relation to heavy and light - I can predict in relation to quantity	- I am learning to know the one more/one less relationship between numbers 1 to 5	- I am learning to compare numbers from 1-10 - I am learning to answer the question how do you know?	- Compare quantities up to 10 in different contexts, recognising when one quantity is

EYFS Granular Steps

		- I can predict in relation to measure - I can predict in relation to time	- I am learning to make things equal for others		greater than, less than or the same as the other quantity; - I can say groups are equal by counting them - I know what one more and 1 less than a number is, from 1 to 10
Composition \& Subitising The knowledge that I am learning is: - To understand that one number can be composed (made up) from two or more smaller numbers - To subitise with my eyes without counting - To understand pattern, doubles and equal groups - To automatically recall number bonds up to 5 , some number bonds up to 10 and some doubles					
	Step 1	Milestone (CP2)	Step 2	Step 3	Check Point (CP6)
Stage 2 (2-3)	- I am learning to subitize with my eyes (perceptual subitising) and recognise and represent the quantity of one - I am learning to represent one on my fingers	- I can recognise a one dot pattern on a dice or domino - I can demonstrate my understanding of one	- I am learning to subitise with my eyes (perceptual subitising) and recognise and represent the quantity of two - I am learning to represent two on my fingers	- I am learning to subitize with my eyes (perceptual subitising) and recognise and represent the quantity of three - I am learning to represent three on my fingers	- I can perceptually subitise of regular quantities of up to three
Stage 3 (3-4)	- I am learning to recognise dice and dot patterns up to two	- I can recognise a two dot or dice pattern	- I am learning to recognise dice	- I am learning to recognise dice patterns of five	- I can explain what whole means

EYFS Granular Steps

	- I am learning to represent one and two in a five frame - I am learning to understand the numerals and what they mean for example the oneness of one and the twoness of two	- I can place counters in the five frame to demonstrate my understanding of one and two	patterns of three and four - I am learning to represent three, four and five in a five frame - I am learning what whole means - I am learning to understand the numerals and what they mean for example the threeness of three and fourness of four	- I am learning to explain the number of objects in a five frame and the number of spaces I can see - I am learning to understand the numerals and what they mean for example the fiveness of five - I am learning what part means	- I can subitise with my eye from 0-5
Stage 4 (4-5)	- I am learning to recognise dice patterns of six - I am learning to understand symbols and what they mean for example the fiveness of five - I am learning to know that a number does not change if it is rearranged - I am learning to know my number bonds to five - I am learning to double numbers 1 to 3	- I can subitise with my eyes from 0-6 - I can subitise with my eyes irregular dot patterns up to 6 - I can double numbers 1 to 3	- I am learning to recognise a small amount of irregular arrangements without counting - I am learning to recognise number patterns as part and whole (part whole) - I am learning to know my number bonds to 10 - I am learning to double numbers 1 to 5 - I am learning to count in $2 s$ to support doubling up to 10	- I am learning to be able to recognise and explain that numbers are made up of other number combinations (inverse operations) - I am learning to recognise that numbers can be partitioned into different pairs of numbers - I am learning to split even quantities into 2 equal groups - I am learning to explore odd and even numbers - I am learning to double all my numbers up to 10	- I can demonstrate a deep understanding of number to 10 , including the composition of each number - Subitise (recognise quantities without counting) up to 5; - I can explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can

EYFS Granular Steps

	- I am learning to start to count in 2 s (doubling 1 to 3)		\bullet		be distributed equally. - I can automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts
Pattern The knowledge that I am learning is: - To identify different structures in the 'unit of repeat,' to support mathematical relationships - To predict, construct and explain patterns					
	Step 1	Milestone (CP2)	Step 2	Step 3	Milestone (CP6)
Stage 2 $(2-3)$	- I am learning to join in with actions and sounds relating to stories and nursery rhymes - I am learning to understand what is happening now and what will happen next	- I can join in the actions with one favourite rhyme - I can understand now and next	- I am learning to line up or arrange object of importance to me - I am learning to anticipate the key events in my day	- I am learning to fully participate and predict all aspects of my routine	- I can predict what comes next in my routine

EYFS Granular Steps

Stage 3 (3-4)	- I am learning to recognise objects that have the same characteristics	- I can recognise when objects are identical - I can demonstrate or describe why objects have the same characteristics	- I am to follow and AB pattern	- I am learning to create an $A B$ pattern	- I can recognise simple patterns I have made such as an $A B$ pattern
Stage 4 $(4-5)$	- I am learning to identify the unit of repeat - I am learning to spot an error in an AB pattern - I am learning to copy and make my own AB pattern independently	- I can identify the unit of repeat - I can spot an error in an $A B$ pattern and tell you why	- I am learning to copy and create independently an ABB pattern - I am learning to spot an error in an ABB pattern	- I am learning to copy and create independently an ABBC pattern - I am learning to spot and error in and ABBC pattern - I am learning to make a pattern with a border or a circle	- I can spot patterns in my environment and explain why they are a pattern - I can predict whether a pattern can keep going - I can construct my own pattern
Shape, Space and Spatial awareness The knowledge that I am learning is: - To describe and understand the properties of 2D and 3D shapes - To understand what happens when shapes combine or move with other shapes - To understand and recognise patterns using shapes					
	Step 1	Milestone (CP2)	Step 2	Step 3	Milestone (CP6)
Stage 2 (2-3)	- I am learning to successfully fit 3D shapes into the right holes in a shape sorter	- I can navigate myself around familiar spaces well - I can use positional language up and	- I am learning to play with shapes and make arrangements - I am learning to use and respond to	- I am learning to show an interest in shape by sustained construction play and talk about the arrangement	- I can show an interest in shapes in the environment - I can build with shapes

EYFS Granular Steps

	- I am learning to use and respond to positional language up and down	down to communicate my needs	positional language on top and under	- I am learning to use and respond to positional language next to	
Stage 3 (3-4)	- I am learning to recognise a triangle and circle - I am learning to respond to positional language such as in front, behind and beside	- I can demonstrate my understanding of positional language - I can spontaneously recognise, triangles and circled in my environment	- I am learning to recognise different sizes of circles and triangles. - I can make patterns using circles and triangles - I am learning to create enclosure with loose parts and construction	- I am learning to recognise and explain 3D shapes such as a sphere, cube and cuboid. - I am learning the directions, forward and backwards, above and below	- I can recognise 2D shapes in the environment - I can recognise some simple 3D shapes and build with cubes and cuboids - I can follow and give directions forwards, backwards, above and below
Stage 4 $(4-5)$	- I am learning to select and use a variety of shapes to combine them for a particular task - I can sort and match 2D shapes - circle, square, triangle, rectangle - I can make patterns using triangles, circles, squares and rectangles	- I can make patterns and represent my ideas using circles and triangles - I can match and sort 2D shapes	- I am learning to follow a map - I am learning to visualise and rotate shapes - I am learning to complete a more complex puzzle - I am learning to sort and match 3D shapes - cube, cuboid, pyramid, cone	- I am learning to combine shapes of different sizes to make other shapes - I am learning to sort two different puzzles and put the puzzles back together - I am learning to follow directions from an adult - I am learning to follow a set of instructions to complete a model using a combination of 3D shapes	- I can name 2D and 3D shapes - I can combine shapes to make other shapes and patterns - I can follow a map and directions from an adult - I can find shapes in other shapes
Measure The knowledge that I am learning is: - To compare length, height, volume, capacity and weight					

EYFS Granular Steps

	Step 1	Milestone (CP2)	Step 2	Step 3	Milestone (CP6)
Stage 2 $(2-3)$	- I am learning to demonstrate my understanding of the concept big and small	- I can say the word big and demonstrate my understanding	- I am learning to recognise when a container is full - I am learning to demonstrate when something feels heavy	- I am learning to compare heavy and light - I am learning to compare between empty and full - I am learning to describe my construction using vocabulary such as short, long, tall and small	- I can tell you which object is heavy and which is light - I can tell you when a container is empty or full - I can compare between different sizes
Stage 3 (3-4)	- I am learning to compare objects using the correct language - I am learning to understand now, next and then	- I can demonstrate my understanding of now, next and then - I can use my mathematical vocabulary to compare size, weight and length	- I am learning to create recognise short and tall in everyday routines - I am learning to talk about length and width - I am learning to know the key times of the day - I am learning to shop with objects through play	- I am learning to construct items that are the same size or weight - I am learning to categories objects in order of size or weight of at least two items - I am learning to understand what watches and clocks are used for and recognise morning and afternoon	- I can order objects by weight or size - I can explain and compare objects - I can talk about what makes an object the same - I can shop using the language of money
Stage 4 (4-5)	- I am learning to organise a sequence of three events - I am learning to compare the size or	- I can organise a sequence of three events - I can shop using resources that	- I am learning to compare distance - I am learning to use scales as a measure of heavy and light using cubes	- I am learning to order the sequence of the day using time related vocabulary - I am learning to estimate and predict the comparison	- I can use my prediction skills to estimate which is heavier, lighter, taller, shorter, wider, longer,

EYFS Granular Steps

	weight of more than three items - I can use marks to represent my findings - I can shop using tens frames, numicon, up to $3 p$	combine and represent up to $3 p$ - I can find items that weigh and measure the same and communicate my understanding	- I am learning to measure one minute - I can shop using numicon 'one' shapes/tens frames for amounts up to 5 matching pennies	between two objects or two amounts - I am learning to read the visual timetable and understand times of the day (e.g. bedtime, lunctime) - I can shop using numicon 'ones' shapes/tens frames up to 10 matching pennies	fuller, emptier, more, less - I can talk about time specific events - I can shop with 1 p pieces - I can order 2 items by weight or capacity or by length or weight

Calculation Policy - Progression of Calculation

Progression of Concrete Manipulatives Used

*These are examples of manipulatives that may be used to support learning.

EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Real-life objects						
0-9 digit cards						
Number track to 10	Number tract to 20	Number line to 100	Number line to 100	Number line including negative numbers	Number line including negative numbers	Number line including negative numbers
Numbered counting stick	Counting stick					
Bead Strings						
	Place value charts - Tens and ones	Place value charts Hundreds, tens and ones	Place value charts Thousands, hundreds, tens and ones	Place value charts Ten thousands, thousands, hundreds, tens, ones and tenths	Place value charts to a million and three decimal places	Place value charts to 10 million and three decimal places
	100 square					

Calculation Policy - Progression of Calculation

Interlocking cubes Use one colour to represent one	Interlocking cubes - Use one colour to represent one amount	Dienes	Dienes	Dienes	Dienes	Dienes
	Place value counters					
	Place value arrow cards tens and ones	Place value arrow cards - tens and ones	Place value arrow cards - H, T, O	Place value arrow cards - Th, H, T, O	Place value arrow cards	Place value arrow cards
Part-part-whole mat	Part-part-whole model					
Bar model with real life objects	Bar model with real life objects/pictorial objects/representative objects e.g. counters	Bar model with counters /Dienes progressing to numbers	Bar model with numbers			
Numicon shapes						
Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount
	Coins and notes					

Calculation Policy - Progression of Calculation

Progression in the Teaching of Counting in EYFS

End of year counting expectations

- count reliably to 20
- count reliably up to 10 everyday objects
- estimate a number of objects then check by counting
- use ordinal numbers in context e.g. first, second, third
- count in twos, fives and tens
- order numbers 1-20
- - say 1 more/ 1 less than a given number to 20

Pre-counting The key focus in pre-counting is an understanding of the concepts more, less and the same and an appreciation of how these are related. Children at this stage develop these concepts by comparison and no counting is involved.

Ordering

Count by reciting the number names in order forwards and backwards from any starting point.

One to one correspondence

One number word has to be matched to each and every object. Lack of coordination is a source of potential error - it helps if children move the objects as they count, use large rhythmic movements, or clap as they count

Pre-counting ideas

Provide children with opportunities to sort groups of objects explicitly using the language of more and less Which group of apples has the most? Which group of apples has the least?

Ordering ideas

Provide children with opportunities to count orally on a daily basis. Rote count so that children are able to understand number order and can hear the rhythm and pattern. Use a drum or clap to keep the beat.

One to one correspondence ideas

Play counting games together moving along a track, play games involving amounts such as knocking down skittles. Use traditional counting songs throughout the day ensuring children have the visual/kinesthetic resources e.g. 5 little ducks, 10 green bottles

Calculation Policy - Progression of Calculation

Cardinality (Knowing the final number counted is the total number of objects) Count out a number of objects from a larger collection. Know the number they stop counting at will give the total number of objects.	Cardinal counting ideas How many bananas are in my fruit bowl? Allow children to physically handle the fruit. Provide children with objects to point. to and move as they count and say the numbers
Subitising (recognise small numbers without counting them) Children need to recognize small amounts without counting them e.g. dot patterns on dice, dots on tens frames, dominoes and playing cards as well as small groups of randomly arranged shapes stuck on cards.	Subitising ideas Provide children with opportunities to count by recognising amounts
Abstraction You can count anything - visible objects, hidden objects, imaginary objects, sounds etc. Children find it harder to count things they cannot move (because the objects are fixed), touch (they are at a distance), see that move around. Children also find it difficult to count a mix of different objects, or similar objects of very different sizes.	Abstraction ideas How many pigs are in this picture? Provide children with a variety of objects to count
Conservation of number Ultimately children need to realise that when objects are rearranged the number of them stays the same.	Conservation of number The amount is 'five' and doesn't change.

Calculation Policy - Progression of Calculation

Addition - EYFS

EYFS Early Learning Goals:

- Have a deep understanding of number to 10 , including the composition of each number
- Subitise (recognise quantities without counting) up to 5
- Verbally count beyond 20 , recognising the pattern of the counting system
- Automatically recall (without reference to rhymes, counting or other aids) number bonds to 5 and some number bonds to 10 , including double facts
- Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity
- (Solve real world mathematical problems with numbers up to 10)
- Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed equally.
Concrete (Build it)
Adding more using real objects- stories using first, then,
now. Using number tracks to count on

Calculation Policy - Progression of Calculation

Key Vocabulary

first-then-now, more, add, addition, makes, total, altogether, equals, balances, how many more to make? number sentence
Sentence/Question Stems
How many are there in this group?
Which group has more?Are the groups equal?How do you know?
First there were...., then more came, now there are ...

Addition - KS1

NC Learning Objectives - end of Year 1:

- Read, write and interpret mathematical statements involving addition (+) and equals (=) signs.
- Represent and use number bonds within 20
- \quad Add one-digit and two-digit numbers to 20, including zero
- \quad Solve one-step problems that involve addition and subtraction, using concrete objects and [pictorial representations
- \quad Solve missing number problems

NC Learning Objectives - end of Year 2:

- Solve problems with addition using concrete objects and pictorial representation, including those involving numbers, quantities and measures, applying increasing knowledge of mental and written methods
- Recall and use addition facts to 20 fluently, and derive and use related facts to 100
- Add numbers using concrete objects, pictorial representations, and mentally, including two-digit number and ones; a two-digit number and tens; two two-digit numbers; adding three one-digit numbers
- Show that addition of two numbers can be done in any order (commutative)
- number and ones; a two-digit number and tens; two two-digit numbers; adding three one-digit numbers

Calculation Policy - Progression of Calculation

Addition - LKS2

NC Learning Objectives - end of Year 3:

- Add numbers mentally including: a three-digit number and ones; a three-digit number and tens; a three-digit number and hundreds
- Add numbers with up to three digits, using formal written methods of columnar

NC Learning Objectives - end of Year 4:

- Add numbers with up to four digits using the formal written methods of columnar addition where appropriate
- Estimate and use inverse operations to check answers to a

Calculation Policy - Progression of Calculation

addition

- Estimate the answer to a calculation and use inverse operations to check answers
- Solve problems, using number facts, place value and more complex addition
calculation
- Solve addition two-step problems in contexts, deciding which operations and methods to use and why

Calculation Policy - Progression of Calculation

Addition - UKS2

NC Learning Objectives - end of Year 5:

- Add whole numbers with more than four digits, including using formal written methods of columnar addition
- Add numbers mentally with increasingly large numbers
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- Solve addition multi-step problems in contexts, deciding which operations and methods to use
- Add decimals up to three places

Concrete	Pictorial	Abstract
A range of concrete apparatus always available to support fluency, reasoning and problem solving (enabling children to show how). E.g place value counters, dienes, multi-link, multiplication grids etc. $104,328+61,731=166,059$ Use the place value grid to answer $0.453+0.664$	Ali had $\mathrm{£10}$. He bought a DVD for ¢6.70 and a CD for E 2.90 . How much money did he have left? Write four number facts that this bar diagram shows. \square \square Complete the number sentences. $\begin{array}{ll} >0.2+0.06+0.009= & >0.4+\ldots+0.001=0.451 \\ =0.006+0.1+0.03 & >0.6+0.003= \end{array}$	Using place value knowledge to line digits up accurately Always carrying below the equals line $\begin{array}{r} ? 4 ? 3 ? \\ +2 ? 5 ? 2 \\ \hline 78529 \\ \hline \end{array}$ Calculate.

Calculation Policy - Progression of Calculation

Key Vocabulary

calculate, calculation, total, sum, commutative, commutativity, exchange, inverse, mental method, column method, written, method, formal method, integers, known facts, rounding, exact answer, approximate answer, order, operation, brackets

Sentence/Question Stems

What happens when there is more than 9 in a place value column? Can we use the inverse to find missing digits? Is column always the best method? When should we use mental methods?

Subtraction - EYFS

EYFS Early Learning Goals

- Have a deep understanding of number to 10 , including the composition of each number
- Subitise (recognise quantities without counting) up to 5
- Verbally count beyond 20 , recognising the pattern of the counting system
- Automatically recall (without reference to rhymes, counting or other aids) number bonds to 5 (including subtraction facts) and some number bonds to 10, including double facts
- Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity

Concrete (Build it)	Pictorial (Draw it)	Abstract (See it)

Calculation Policy - Progression of Calculation

Subtraction - KS1

NC Learning Objectives - end of Year 1:

- Read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs
- Represent and use number bonds and related subtraction facts within 20

NC Learning Objectives - end of Year 2:

- Read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs
- Represent and use number bonds and related subtraction facts within 20

Calculation Policy - Progression of Calculation

- Subtract one-digit and two-digit numbers to 20, including 0
- Solve one step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems
- Subtract one-digit and two-digit numbers to 20, including 0
- Solve one step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems

Calculation Policy - Progression of Calculation

Subtraction - LKS2

NC Learning Objectives - end of Year 3:

- Subtract numbers mentally, including: a three-digit number and ones; a three-digit number and tens; a three digit number and hundreds
- Subtract numbers with up to three digits, using formal written methods of columnar subtraction
- Estimate the answer to a calculation and use Inverse operations to check answers
- Solve problems, including missing number problems, using number facts, place value and more

NC Learning Objectives - end of Year 4:

- Subtract numbers with up to four digits using the formal written methods of columnar subtraction where appropriate
- Estimate and use inverse operations to check answers to a calculation
- Solve subtraction two-step problems in contexts, deciding which operations and methods to use

Calculation Policy - Progression of Calculation

Calculation Policy - Progression of Calculation

Subtraction - UKS2

NC Learning Objectives - end of Year 5:

- Subtract whole numbers with more than four digits, including using formal written methods (columnar subtraction)
- Subtract numbers mentally with increasingly large numbers
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- Solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Calculation Policy - Progression of Calculation

Key Vocabulary

Exchange, inverse, missing digits, most effective calculation strategy, column method, mental method, integer, order, operation, brackets, approximate

Sentence/Question Stems

Why is it important to subtract the smallest place value column first?
Does it matter which number goes on top?
Does it matter if the numbers don't have the same number of digits?
What happens if there is more than 9 in a place value column?

Is column method always the best method? When should we use mental methods?

Calculation Policy - Progression of Calculation

Multiplication - EYFS

EYFS Early Learning Goals

- Have a deep understanding of number to 10 , including the composition of each number
- Subitise (recognise quantities without counting) up to 5
- Explore and represent patterns within numbers to 10, including evens and odds and double facts
- Automatically recall (without reference to rhymes, counting or other aids) double facts
- (Solve problems including doubling)
Concrete

Calculation Policy - Progression of Calculation

Multiplication - KS1

NC Learning Objectives - end of Year 1:

- Solve one-step problems involving multiplication by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

NC Learning Objectives - end of Year 2:

- Recall and use multiplication facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
- Calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (x) and equals $(=)$ signs
- Show that multiplication of two numbers can be done in any order (commutative)
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts

Concrete	Pictorial	Abstract
Multiplication through arrays/repeated addition	Multiplication through arrays/repeated addition Bar model to show repeated addition	Writing calculations using x and = symbols$\begin{gathered} 5+5+5+5=20 \\ 4 \times 5=20 \\ 5 \times 4=20 \end{gathered}$Addition Multiplication Story $10+10+10$ 6×5 Use <, > or = to make the statements correct. $\begin{array}{rr} 2 \times 5 & 5 \times 2 \\ 3 \times 2 & \bigcirc \\ 4 \times 5 \\ 10 \times 5 & \bigcirc \\ 5 \times 5 \end{array}$

Calculation Policy - Progression of Calculation

Key Vocabulary

Multiplication, multiply, multiplied by, lots of, groups of, repeated addition, multiplication, represent, column, row, equal, twice, array, multiple, count up, times table, row, column, fact family, odd, even, multiplication fact, multiplication table, repeated addition, commutative

Sentence/Question Stems

\qquad equal groups with \qquad in each group.

Multiplication - LKS1

NC Learning Objectives - end of Year 3:

Recall and use multiplication facts for the 3, 4 and 8 multiplication tables Write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods Solve problems, including missing number problems, involving multiplication, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

NC Learning Objectives - end of Year 4:

- Recall multiplication facts for multiplication tables up to 12×12

Use place value, known and derived facts to multiply mentally, including: multiplying by 0 and 1 ; multiplying together three numbers
Recognise and use factor pairs and commutativity in mental calculations
Multiply two-digit and three-digit numbers by a one-digit number using formal written layout
Solve problems involving multiplying, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

Concrete	Pictorial				Abstract
Matching multiplication to concrete representation	Using the bar model	21			Using repeated addition to multiply$\begin{aligned} & -^{+}-^{+}-^{+}{ }^{+}{ }^{+}-{ }^{-}= \\ & \chi^{\times}=- \\ & =- \end{aligned}$
路整		7	7	7	
8×4					

Calculation Policy - Progression of Calculation

Calculation Policy - Progression of Calculation

Multiplication - UKS1

NC Learning Objectives - end of Year 5:

- Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.
- Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers; Establish whether a number up to 100 is prime and recall prime numbers up to 19
- Multiply numbers mentally drawing upon known facts;
- Multiply whole numbers and those involving decimals by 10, 100 and 1000
- Recognise and use square numbers and cube numbers, and notation for squared and cubed
- Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers
- Solve problems involving multiplication including using their knowledge of factors and multiples, squares and cubes; involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign; involving multiplication and division, including scaling by simple fractions and problems involving simple rates.

NC Learning Objectives - end of Year 6:

- Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- Perform mental calculations, including with mixed operations and large numbers; Identify common factors, common multiples and prime numbers Use their knowledge of the order of operations to carry out calculations involving the four operations
- Solve problems involving addition, subtraction, multiplication and division.
- Use estimation to check answers to calculations and determine, in the context of the problem, an appropriate degree of accuracy

Concrete	Pictorial	Abstract	
Using base 10 or place value counters to multiply 2 digit by 2 digit numbers	Multiply on place value grid using counters (when multiplying by 10,100)	Formal multiplication methods	
Rosie adapts the Base 10 method to calculate 44×32		3 2 5	$3 \cdot 4$ $3 \cdot 4$ 2 \times 3 .1 $0 \cdot 2$ 6 1 1

Calculation Policy - Progression of Calculation

0 tth Hth 000 0000 00 000 0000 00 000 .0000 00 0 3.42×3		Multiplication with place value counters linked to formal method								
Key Vocabulary Multiplying, partition, exchange, zero, prime number, multiple, common factor, common multiple, square number, prime number, composite number, cube number, squared, cubed, long multiplication, expanded method.			Sentence/Question Stems What is important to remember as we begin to multiply the tens number? Can the inverse operation be used? How could you draw the problem? What can we exchange if the product is 42 ones?							

Calculation Policy - Progression of Calculation

Division - EYFS

EYFS Early Learning Goals:

- Have a deep understanding of number to 10 , including the composition of each number
- Subitise (recognise quantities without counting) up to 5
- Explore and represent patterns within numbers to 10 , including evens and odds, double facts and how quantities can be shared equally
- Automatically recall (without reference to rhymes, counting or other aids) double facts
- Solve problems including halving and sharing

Concrete	Pictorial		Abstract
Halving with real objects Show the children a bowl of strawberries. Explain that you are going to share them into 2 equal groups so there will be half for you and half for your friend. Put a handful straight onto each plate without counting - make sure that one plate has much more strawberries than the other. Ask the children if that is fair. Prompt them to show you how to share the strawberries fairly.	Halving		Using digits to represent the part part whole model

Key Vocabulary

Half, halving, half of, share between, sharing, equal, equal groups, sets, count in $2 \mathrm{~s} / 5 \mathrm{~s} / 10 \mathrm{~s}$

Sentence/Question Stems

I have \qquad If I share them equally between 2 there are \qquad each.

Half of \qquad is \qquad
The groups are equal because

Calculation Policy - Progression of Calculation

Division - KS1

NC Learning Objectives - end of Year 1:

Solve one-step problems involving division by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

NC Learning Objectives - end of Year 2:

Recall and use division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
Calculate mathematical statements for division within the multiplication tables and write them using the division (\div) and equals (=) signs
Show that division of one number by another cannot be done in any order
Solve problems involving division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts
Concrete

Calculation Policy - Progression of Calculation

Division - LKS2

NC Learning Objectives - end of Year 3:

- Recall division facts for the 3,4 and 8 multiplication tables
- Write and calculate mathematical statements for division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- Solve problems, including missing number problems, involving division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

NC Learning Objectives - end of Year 4:

- Recall division facts for multiplication tables up to 12×12
- Use place value, known and derived facts to divide mentally, including dividing by 1
- Recognise and use factor pairs and commutativity in mental calculations
- Solve problems involving division, including positive integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

Concrete	Pictorial	Abstract
Using objects to represent numbers	Using bar models	Writing number sentences to describe fact families

Calculation Policy - Progression of Calculation

Circle the buttons in groups of 4 .

Can you also split the buttons into 4 equal groups? How is this the same? How is it different?

There are 12 pieces of fruit. They are shared equally between 3 bowls. How mary pieces of fuit are in each bool?
Use cubes/counters to represent frut and share between 3 circles

Using base 10/place value counters
Use place value counters to show the steps to divide 30 by 10

- -

Can you use the same steps to divide a 3 -dga number lke 210 by 10 ?
$\bullet \bullet 0$
Use Base 10 to divide 140 by 10
Explain what you have done.

Complete the bar models and the calculations.

\square $24 \div 4=$ \qquad

Using place value grid and part part whole model

Eva uses a place value grid and part-whole model to solve $66 \div 3$

Complete the fact family

Complete the sentences.
There are ___ lots of ___
\qquad
\qquad
$\square \div-\bar{Z}$
There are ___ lots of — \times _ $=$

$-\div=$
What's the same about each question? What's different?
Children to be able to make sense of the place value counters and write calculations to show the process.

$42-3$

$42=30+12$
$30-3=10$
$12-3=4$
$10+4=14$

Key Vocabulary

Quotient (quantity produced by the division of 2 numbers), inverse, sharing, grouping, partition, remainder, repeated subtraction, inverse operation, factors

Sentence/Question Stems

Can you use concrete or pictorial representations to help you?
Can you write a number sentence to show this?
What is the difference between sharing and grouping?
There are \qquad lots of \qquad in \qquad

Calculation Policy - Progression of Calculation

Division - UKS2

NC Learning Objectives - end of Year 5:

- Divide numbers mentally drawing upon known facts
- Divide whole numbers and those involving decimals by 10,100 and 1000
- Divide numbers up to 4 digits by a 1-digit number using the formal written method of short division and interpret remainders appropriately for the context
- Solve problems involving division including using their knowledge of factors and multiples, square and cubes; involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign; involving multiplication and division, including scaling by simple fractions and problems involving simple rates.

NC Learning Objectives - end of Year 6:

- Divide numbers up to 4 digitis by a 2-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- Divide numbers up to 4 digits by a 2-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- Perform mental calculations, including with mixed operations and large numbers; Identify common factors, common multiples and prime numbers
- Use their knowledge of the order of operations to carry out calculations involving the four operations
- Solve problems involving addition, subtraction, multiplication and division.
- Use estimation to check answers to calculations and determine, in the context of the problem, an appropriate degree of accuracy

Calculation Policy - Progression of Calculation

White Rose Overviews

Year 1:

White Rose Overviews

Year 2:

White Rose Overviews

Year 3:

White Rose Overviews

Year 4:

White Rose Overviews

Year 5:

White Rose Overviews

Year 6:

White Rose/National Curriculum - Progression of Skills

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Place Value							
	Count objects, actions and sounds, up to 10 Subitise up to 10 using patterns- for example dots on dice, on tens frames, fingers Count beyond 10 ELG: Have a deep understanding of number to 10 , including the composition of each number ELG: Subitise (recognise quantities without counting) up to 5 ELG: Verbally count beyond 20, recognising the pattern of the counting system; *See Number Sense Progression EYFS	Count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number. Count numbers to 100 in numerals: count in multiples of 2 5 and 10s *See Number Sense Progression	Count in steps of 2,3 an 5 from 0 , and in 10s from and number, forward and backward. *See Number Sense Progression	Count from 0 in multiples of 4, 8, 50 and 100. Find 10 or 100 more or less than a given number	Count in multiples of 6, 7, 9, 25 and 1000. Count backwards through zero to include negative numbers	Count forwards or backwards in steps of powers of 10 for any given number up to $1,000,000$ Count forwards and backwards with positive and negative whole numbers, including through zero	

White Rose/National Curriculum - Progression of Skills

	Link the number symbol (numeral) with its cardinal number value ELG: Explore and represent patterns within numbers up to 10, including evens and odds	Identify and represent numbers using objects and pictorial representations. Read and write numbers to 100 in numerals Read any write numbers from 1 to 20 in words and numerals	Read and write numbers to at least 100 in numerals and in words. Identify, represent and estimate numbers using different representations, including the number lin	identify, represent and estimate numbers using different representations Read and write numbers up to 1000 in numerals and words	identify, represent and estimate numbers using different representations Read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value	Read, write (order and compare) numbers to at least 1,000,000 and determine the value of each digit. Read Roman numerals to 1000 (M) and recognise years written in Roman numerals.	Read, write (order and compare) numbers to at least 10,000,000 and determine the value of each digit.

White Rose/National Curriculum - Progression of Skills

	Compare numbers - Use vocabulary such as 'more than', 'less than', 'fewer', 'the same as', 'equal to’ understand the 'one more than or one less than' relationship between consecutive numbers ELG: Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity	Given a number, identify 1 more and 1 less.	Recognise the place value of each digit in a two digit number (tens and ones) Compare and order numbers from 0 up to 100; use <> and = signs	Recognise the place value of each digit in a three digit number (hundreds, tens and ones) Compare and order numbers up to 1000	Find 1000 more or less than a given number Recognise the place value of each digit in a four digit number (thousands, hundreds, tens and ones) Compare and order numbers beyond 1000	(Read, write), order and compare numbers to at least 1,000,000 and determine the value of each digit.	(Read, write), order and compare numbers to at least 10,000,000 and determine the value of each digit.

White Rose/National Curriculum - Progression of Skills

Place Value: Problems and Rounding			Use place value and number facts to solve problems	Solve number problems and practical problems involving these ideas	Round any number to the nearest 10, 100 or 1000. Solve number and practical problems that involve all of the above with increasingly large positive numbers	Interpret negative numbers in context. Round any number up to $1,000,000$ to the nearest 10, 100, $1000,10,000$ and 100,000. Solve number problems and practical problems that involve all of the above	Round any whole number to a requires degree of accuracy. Use negative numbers in context, and calculate intervals across zero. Solve number problems that involve all of the above.

Addition and Subtraction

White Rose/National Curriculum - Progression of Skills

	Explore the composition of numbers to 10 automatically recall number bonds for numbers 0 to 5 and some to 10 ELG: Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10, including double facts.	Read, write and interpret mathematical statements involving addition (+), subtraction () and equals (=) signs. Represent ant use number bonds and related subtraction facts within 20	Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100. Show that addition of two numbers can be done in any order (Commutative) and subtraction of one number from another cannot. Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems	Estimate the answer to a calculation and use inverse operations to check answers	Estimate and use inverse operations to check answers to a calculation	Use rounding to check answers to calculations and determine in the context of a problem levels of accuracy

White Rose/National Curriculum - Progression of Skills

		Add and subtract one digit and two digit numbers to 20, including zero	Add and subtract numbers using concrete objects pictorial representations and mentally including: a two digit number and ones a two digit number and 10s two 2 digit numbers adding three one digit numbers	Add and subtract numbers mentally including: a 3 digit number and ones a 3 digit number and 10s a three digit number and hundreds Add and subtract numbers with up to three digits using formal written methods of columnar addition and subtraction	Add and subtract numbers with up to four digits using formal written methods of columnar addition and subtraction where appropriate.	Add and subtract whole numbers with more than 4 digits including using formal written methods (columnar addition and subtraction) Add and subtract numbers mentally with increasingly large numbers	Perform mental calculations, including with mixed operations and large numbers Use their knowledge of the order of operations to carry out calculations involving the four operations

White Rose/National Curriculum - Progression of Skills

	Solve real world mathematical problems with numbers up to 10	Solve one step problems that involve addition and subtraction, using concrete objects and pictorial representations and missing number problems such as $7=$ _ -9	Solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers quantities and measures applying their increasing knowledge of mental and written methods	Solve problems, including missing number problems, using number facts, place value and more complex addition and subtraction	Solve addition and subtraction two step problems in contexts, deciding which operations and methods to use and why.	Solve addition and subtraction multi step problems in contexts, deciding which operations and methods to use and why solve problems involving addition, subtraction, multiplication and division and a combination of these including understanding the meaning of the equals sign	Solve addition and subtraction multi step problems in contexts, deciding which operations and methods to use and why

Multiplication and Division

White Rose/National Curriculum - Progression of Skills

	Solve problems including doubling, halving and sharing ELG: Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally	Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s up to 100	Recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables including recognising odd and even numbers show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot	Recall and use multiplication and division facts for the three four and eight multiplication tables	Recall multiplication and division facts for multiplication tables up to 12 x 12 Use place value known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together 3 numbers recognise and use factor pairs and commutativity mental calculations	Identify multiples and factors including finding all factor pairs of a number and common factors of 2 numbers Know and use vocabulary of prime numbers, prime factors and composite(non prime) numbers establish whether a number up to 100 is prime and recall prime numbers up to 19 recognise and use square numbers and cube numbers the notation for	Identify common factors, common multiples and prime numbers Use estimation to check to answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

White Rose/National Curriculum - Progression of Skills

						squared and cubed.	

White Rose/National Curriculum - Progression of Skills

			Calculate mathematical statements for multiplication and division within multiplication tables and write them using the multiplication division and equals signs	Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one digit numbers, using mental and progressing to formal written methods	Multiply two digit and threedigit numbers by a one digit number using formal written layout	Multiply numbers up to four digits by a one- or twodigit number using a formal written method including long multiplication for two digit numbers multiply and divide numbers mentally drawing upon known facts divide numbers up to four digits by a one digit number using formal written method of short division and interpret remainders appropriately for the context	Multiply multi digit numbers up to four digits by a two-digit whole number using the formal written method of long multiplication Divide numbers up to four digits by a two-digit whole number using the formal written method of long division and interpret remainders as whole number remainders, fractions or by rounding as appropriate for the context Divide numbers up to four digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context perform mental calculations including

White Rose/National Curriculum - Progression of Skills

						Multiply and divide whole numbers and those involving decimals by 10,100 and 1000	with mixed operations and large numbers
	Solve problems including doubling, halving and sharing	Solve one step problems involving multiplication and division by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher	Solve problems involving multiplication and division using materials, arrays, repeated addition, mental methods, and multiplication and division facts including problems in contexts	Solve problems including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects	Solve problems involving multiplying and adding, including using the distributive law to multiply 2-digit numbers by 1 digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects	Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes solve problems involving multiplication and division, including scaling by simple fraction and problems involving simple rates	Solve problems involving addition subtraction multiplication and division

White Rose/National Curriculum - Progression of Skills

						Solve problems involving addition subtraction multiplication and division and a combination of these, including understanding the meaning of the equals sign	Use their knowledge of the order of operations to carry out calculations involving the four operations

Fractions, Decimals and Percentages

White Rose/National Curriculum - Progression of Skills

		Recognise, find and name a half as one of two equal parts of an object shape or quantity Recognise find and name a quarter as one of four equal parts of an object shape or quantity	Recognise, find, name and write fractions $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a length shape set of objects or quantity	Count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers in or quantity's by 10 recognise find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators Recognise and use fractions as numbers: unit fractions and nonunit fractions with small denominators	Count up and down in hundredths; recognise that hundredths arise when dividing an object by 100 and dividing tenths by 10	Identify name and write equivalent fractions of a given fraction, represented visually including tenths and hundredths Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements>1 as mixed number for example

White Rose/National Curriculum - Progression of Skills

White Rose/National Curriculum - Progression of Skills

			Write simple fractions for example $1 / 2$ of $6=3$	Add and subtract fractions with the same denominator within one whole for example 5/7 $+1 / 7=6 / 7$	Add and subtract fractions with the same denominator	Add and subtract fractions with the same denominator and denominators that are multiples of the same number Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams	Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions Multiply simple pairs of proper fractions, writing the answer in its simplest form e.g. $1 / 4 \times 1 / 2$ $=1 / 8$ Divide proper fractions by whole numbers e.g. $1 / 3$ divided by $2=1 / 6$

White Rose/National Curriculum - Progression of Skills

			Solve problems that involve all of the above	Solve problems involving increasingly hard fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number			
					Recognise and write decimal equivalents of any number of tenths or hundredths recognise and write decimal equivalent to 1/4 $1 / 2,3 / 4$	Read and write decimal numbers as fractions for example $0.71=$ 71/100 recognise and use thousandths and relate them to tenths hundredths and decimal equivalents	Identify the value of each digit in numbers given to three decimal places

White Rose/National Curriculum - Progression of Skills

White Rose/National Curriculum - Progression of Skills

White Rose/National Curriculum - Progression of Skills

White Rose/National Curriculum - Progression of Skills

Ratio and Proportion							
							Solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts Solve problems involving the calculation of percentages and the use of percentages for comparison Solve problems involving similar shapes where the scale factor is known or can be found Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples

White Rose/National Curriculum - Progression of Skills

Algebra Note - although algebraic notation is not introduce d until Y6, algebraic thinking starts much earlier as exemplifie d by the 'missing number' objectives from Y1/2/3		Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=-9$	Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.	Solve problems, including missing number problems			Use simple formula generate and describe linear number sequences Express missing number problems algebraically find pairs of numbers that satisfy an equation with two unknowns enumerate possibilities of combinations of two variables

Measurement

White Rose/National Curriculum - Progression of Skills

	Compare length, weight and capacity by making predictions and using vocabulary 'than' [for example, "This is heavier than that."]	Compare, describe and solve practical problems for: lengths and height, mass/weight, capacity and volume time measure and begin to record the following: lengths and height mass/ weight capacity /volume time (hours, minutes, seconds)	Choose and use appropriate standard units to estimate and measure length/ height in any direction, mass, temperature, capacity to the nearest appropriate unit Using rulers scales thermometers and measuring vessels compare and order length, mass, volume/ capacity and record the results using >	Measure, compare, add and subtract lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg,g); volume/capacity (l/ml)	Convert between different units of measure estimate compare and calculate different measures	Convert between different units of metric measure Understand and use approximate equivalence is between metric units and common imperial units such as inches, pounds and pints Use all four operations to solve problems involving measure using decimal notation including scaling	Solve problems involving the calculation and conversion of units of measure using decimal notation up to three decimal places Where appropriate use, read, write and convert between standard units converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit and vice versa using decimal notations up to three decimal places Convert between miles and kilometres

White Rose/National Curriculum - Progression of Skills

		Recognise and know the value of different denominations of coins and notes	Recognise and use the symbols for pounds (£) and pence (p) Combine amounts to make a particular value find different combinations of coins that equal the same amount of money Solve simple problems in a practical context involving addition and subtraction of money of the same unit including giving change	Add and subtract amount of money to give change using both pounds and pence in practical context	Estimate, compare and calculate different measures including money in pounds and pence	Use all four operations to solve problems involving measure for example money	

White Rose/National Curriculum - Progression of Skills

		Sequence events in chronological order using language for example, before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening recognise and use language relating to dates, including days of the week, weeks, months and years tell time to the hour and half past the hour and draw hands on the clock face to show these times	Compare and sequence intervals of time tell and write the time to five minutes, including quarter past/to the hour and draw the hands on the clock face to show these times Know the number of minutes in an hour and the number of hours in a day	Tell and write the time from an analogue clock including using Roman numerals from I too XII and 12 hour and 24 hour clocks estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, am/pm, morning, afternoon, noon and midnight Know the number of seconds in a minute and the number of days in each month, year and leap year	Read write and convert time between analogue and digital 12 and 24 hour clocks solve problems involving converting from hours to minutes, minutes to seconds, years to months, weeks to days	Solve problems involving converting between units of time	Use read write and convert between standard units converting measurements of time from a smaller unit of measure to a larger unit and vice versa

White Rose/National Curriculum - Progression of Skills

				compare durations of events for example to calculate the time taken by a particular event or task		

White Rose/National Curriculum - Progression of Skills

				Measure the perimeter of simple 2 D shapes	Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres find the area of rectilinear shapes by counting squares	Measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres Calculate and compare the area of rectangles including squares and including using standard units and estimate the area of irregular shapes estimate volume for example using one centimetre cubed blocks to build cuboids including cubes and capacity for	Recognise that shapes with the same area can have different perimeters and vice versa Recognise when it is possible to use formulae for area and volume of shapes calculate the area of parallelograms and triangles Calculate estimate and compare volume of cubes and cuboids using standard units including cubic centimetres and cubic metres and extending to other units

White Rose/National Curriculum - Progression of Skills

						example using water	
Geometry							
Geometry: 2D shapes	Select, rotate and manipulate shapes in order to develop spatial reasoning skills compose and decompose shapes so that children recognise a shape can have other shapes within it, just as numbers can	Recognise and name, 2D shapes for example rectangles (including squares), circles and triangles	Identify and describe the properties of 2D shapes, including the number of sides and line of symmetry in a vertical line identify 2D shapes on the surface of 3D shapes) for example a circle on a cylinder and a triangle on a pyramid) compare and sort common 2D shapes and everyday objects	Draw 2D shapes	Compare and classify geometric shapes including quadrilaterals and triangles based on their properties and size identify lines of symmetry in 2D shapes presented on different orientations	Distinguish between regular and irregular polygons based on reasoning about equal sides and angles Use the properties of rectangles to juice related facts and find missing lengths and angles	Draw 2D shapes using given dimensions and angles compare and classify geometric shapes based on their properties and sizes Illustrate and name parts of circles including radius and diameter and circumference and know that the diameter is twice the radius

White Rose/National Curriculum - Progression of Skills

Geometry: 3D shapes	Select, rotate and manipulate shapes in order to develop spatial reasoning skills	Recognise and name common 3D shapes for example cuboids including cubes pyramids and spheres	Recognise and name common 3D shapes for example cuboids including cubes pyramids and spheres compare and sort common 3D shapes and everyday objects	Make 3D shapes using modelling materials recognise 3D shapes in different orientations and describe them	Identify 3D shapes including cubes and other cuboids from 2D representations	Recognise describe and build simple 3D shapes including making nets

White Rose/National Curriculum - Progression of Skills

				Recognise angles as a property of shape or a description of a turn identify right angles Recognise that two right angles make half a turn three make $3 / 4$ of a turn and four a complete turn; identify whether angles are greater than or less than a right angle identify horizontal and vertical lines and pairs of perpendicular and parallel lines	Identify acute and obtuse angles and compare and order angles up to two right angles by size Identify lines of symmetry in 2D shapes represented in different orientations complete a simple symmetrical figure with respect to a specific line of symmetry	Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles draw given angles, and measure them in degrees Identify: angles at a point and one whole turn angles at a point on a straight line and half a turn other multiple of 90 degrees	Find unknown angles in any triangles, quadrilaterals and regular polygons Recognise angles where they meet at a point, on a straight line or are vertically opposite and find missing angles

White Rose/National Curriculum - Progression of Skills

	Continue, copy and create repeating patterns	Describe position direction and movement, including whole, half, quarter and three-quarter turns	Order and arrange combinations of mathematical objects in patterns and sequences Use mathematical vocabulary to describe position direction and movement including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three quarter turns clockwise and anticlockwise		Describe positions on a 2D grid as coordinates in the first quadrant Describe movements between positions as translations of a given unit to the left/ right and up/ down plot specified points and draw sides to give to complete a given Polygon	Identify describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed	Describe positions on the full coordinate grid all 4 quadrants Draw and translate simple shapes on the coordinate plane, and reflect them in the axes

Statistics

White Rose/National Curriculum - Progression of Skills

White Rose/National Curriculum - Progression of Skills

